Search by job, company or skills

L

Machine Learning Engineer

Fresher
new job description bg glownew job description bg glownew job description bg svg
  • Posted 8 days ago
  • Be among the first 10 applicants
Early Applicant

Job Description

About the project:

We are seeking a skilled Machine Learning Engineer to develop and deploy Graph Neural Network (GNN) based surrogate models that approximate complex physics simulations for oil & gas pipeline and well networks. This is a hands-on role for someone who can build high-fidelity neural network models that replace computationally expensive reservoir and network simulators (Nexus, Prosper).

Responsibilities:

Design and implement Neural Network architectures to model flow dynamics in interconnected pipeline networks

Build surrogate models that accurately predict pressure distributions, flow rates, and network behavior under varying operational scenarios (training data is acquired through running simulations of the physics models)

Create data pipelines to extract network topology and simulation results from physics-based models (Nexus/Prosper) and transform them into graph representations

Develop training frameworks that incorporate physics constraints (conservation laws, pressure-flow relationships) into neural network loss functions

Collaborate with petroleum engineers to ensure model predictions align with physical behavior and operational constraints

Implement model monitoring, validation, and continuous improvement workflows

business trip to Kuwait

Skills Description:

Strong expertise in Graph Neural Networks (GCN, GraphSAGE, Message Passing Networks) with proven implementation experience

Deep understanding of deep learning frameworks (PyTorch Geometric, DGL, or TensorFlow GNN)

Experience building surrogate models or physics-informed neural networks (PINNs) for engineering applications

Proficiency in Python and scientific computing libraries (NumPy, SciPy, Pandas)

Demonstrated ability to work with complex data structures (graphs, time-series, spatial data)

Understanding of optimization techniques and handling large-scale training data

Technical Domain Knowledge:

Understanding of graph theory and network analysis

Experience with data structures and graph representations (adjacency matrices, edge lists, sparse tensors)

Knowledge of hyperparameter tuning, model building and uncertainty quantification in ML models

Nice-to-have skills:

Background in petroleum engineering, process engineering, or fluid dynamics

Familiarity with reservoir simulation or pipeline hydraulics

Experience with MLOps practices and model lifecycle management

Publications or open-source contributions in graph ML

Experience deploying ML models in production cloud environments (containerization, API development)

Industry Experience:

Oil & gas industry experience is a strong plus, However, candidates with relevant surrogate modeling experience from other engineering domains encouraged to apply

Educational Background:

MS/PhD in Computer Science, Computational Engineering, Applied Mathematics, or related field preferred

Strong mathematical foundation in linear algebra, graph theory, and numerical methods

Understanding of graph theory and network analysis

Languages:

  • English: C1 Advanced

What we offer

  • Luxoft Training Center (more than 400 professional training programs, the High Performers Club)
  • Self-Learning Library
  • Internal Mobility (rotation between projects and accounts, new career opportunities)
  • Global Relocation
  • Mentoring Program (professional career development for leaders)
  • Recognition and Evaluation (feedback culture, regular appraisals)
  • Professional Communities (join one of our many internal communities: Agile Community, Tech Community, Business Analysis Community, etc.)
  • Team Events (take part in the many fun social activities organized by the Luxoft team in Serbia

Luxoft is committed to fostering a diverse and inclusive workplace.

We show fairness to all throughout our talent acquisition and management process.

More Info

Job Type:
Industry:
Function:
Employment Type:

About Company

Job ID: 135011331